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TECHNICAL MEMORANDUM

ARTIFICIAL AGING EFFECTS ON CRYOGENIC FRACTURE TOUGHNESS
OF THE MAIN STRUCTURAL ALLOY FOR THE SUPER LIGHTWEIGHT TANK

1.  INTRODUCTION

NASA initiated research to increase payload weight capacity for the Space Shuttle, in order to
support deployment of the International Space Station in a cost-effective manner. Aluminum-copper-
lithium (Al-Cu-Li) alloys are considered ideal for this launch system, since they combine high strength
with low density compared to other Al-based alloys; e.g., alloys 2219 and 2014, traditionally used in
aerospace applications. The external tank was fabricated from alloy 2219. It has been replaced with a
super lightweight tank (SLWT) fabricated from large rolled plates of an Al-Cu-Li alloy (alloy 2195).

Cryogenic strength and fracture toughness are critical to this application, since the SLWT houses
liquid oxygen and hydrogen. If properly processed and heat treated, this alloy can display higher fracture
toughness at cryogenic than at ambient temperature. However, the properties of production materials
have shown greater variation than those of established alloys, as is the case with any new alloy
transitioned to a demanding application. To ensure proper quality control, NASA has imposed lot
acceptance testing on alloy 2195 plate before it can be used in the SLWT program. To be accepted,
materials must pass tensile, simulated service fracture, and stress corrosion cracking (SCC) tests.
Simulated service fracture tests are conducted at cryogenic temperatures, while tensile and SCC tests
are conducted at ambient temperatures. One lot acceptance guideline is that alloy 2195 must have a
cryogenic fracture toughness (CFT) value >30 ksi√in. It is equally important that the alloy meet these
requirements under simulated service conditions to enhance flight safety. Using these criteria, some
commercial alloy 2195 heats were rejected for the SLWT program because they failed to meet simulated
service fracture requirements.

Previous studies have shown that CFT was significantly improved in alloy 2195 by a multistep
heating rate controlled (MSRC) aging treatment which was developed in-house.1,2 However, MSRC
aging requires very tight temperature controls that cannot be readily applied in a production
environment, which uses large-scale furnaces that are unable to maintain the designed heating rate of
0.6 °C (1 °F)/hr and may fluctuate by at least ±3 °C (5 °F) to the desired aging temperatures.

A new program was initiated to determine whether the MSRC aging treatment could be further
modified to facilitate its implementation to flight hardware production. It was successfully redesigned as
a simplified two-step aging treatment. The new treatment can control the size and location of strengthening
precipitate T1 in the same way as MSRC aging, thus achieving higher properties at cryogenic
temperatures. When tested on several materials that were previously rejected for the SLWT program,
two-step aging proved to be so effective that the improved CFT properties actually exceeded the
simulated service fracture requirements. Ultimately, it is hoped that the two-step aging treatment can be



2

exploited to reduce the rejection rate of low-property materials, making the SLWT program more cost
effective. This Technical Memorandum details the effects of the two-step aging treatment.
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2.  TECHNICAL APPROACH

This study used an alloy which had yield strength (YS) >73 ksi and displayed a cryogenic-to-
ambient fracture toughness ratio (FTR) <1 after isothermal aging.1,2 In Al-Cu-Li alloys, FTR correlates
well with the size and density of T1 in the matrix2 (see fig. 1). High CFT can be achieved by  suppres-
sing T1 precipitation at subgrain boundaries and enhancing T1 nucleation in the matrix, thus eliminating
premature fractures along precipitate-rich subgrain boundaries (see fig. 2).

Figure 1.  Fracture toughness versus maximum size of T1 at subgrain boundaries,
                   with fracture toughness decreasing as T1 size increases.1,2

Figure 2.  Effects of precipitation temperature on free energy
of a precipitate particle as a function of its radius.3
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In Al-Cu-Li alloys, T1 particles generally precipitate heterogeneously on matrix dislocations
and/or subgrain boundaries, depending on aging temperatures and duration.4 In alloy 2095 (which is
similar to alloy 2195), lower aging temperature was found to suppress T1 precipitation at subgrain
boundaries,4 explained on the basis of equation (1) for the heterogeneous nucleation rate (Nhet):

5
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where

Nhet = Heterogeneous nucleation rate

ω = A factor that includes vibration frequency of atoms and area of critical nucleus

C1 = Concentration of nucleation sites per unit volume

∆GM = Activation energy for atomic migration

∆G* = Activation energy barrier required to form critical-sized nuclei

k = Boltzmann’s constant

T = Temperature (0 K).

When the alloy composition is fixed, this equation indicates that the heterogeneous nucleation
rate is greatly dependent on C1 and ∆G*. Αrranged in decreasing order, ∆G* indicates (1) homogeneous
sites, (2) vacancies, (3) dislocations, (4) stacking faults, (5) grain boundaries and interphase boundaries,
and (6) free surfaces.

Apparently, alloy 2195 requires more activation energy for T1 nucleation on matrix dislocations
than on subgrain boundaries. However, matrix nucleation sites generally outnumber subgrain boundary
sites, especially when the alloy is stretched prior to aging. With low undercooling (high activation
barrier/high aging temperature), nucleation rates will be highest at sites requiring little activation energy,
such as grain and subgrain boundaries. As undercooling increases (low activation barrier/low aging
temperature), higher nucleation rates are seen at sites that have the highest concentration of nucleation
sites. Therefore, by lowering the aging temperature, matrix dislocations become favorable nucleation
sites and T1 nucleation can be restrained at subgrain boundaries.

However, low-temperature aging is associated with sluggish aging kinetics, which are not
desirable for industrial production. Furthermore, it was not clear whether a low aging temperature
could sufficiently strengthen the alloy while improving its fracture toughness. Therefore, a need existed
to develop a new aging treatment that could improve CFT while retaining YS at 75–78 ksi and aging up
the properties within a reasonable length of time.

Precipitation of strengthening phases requires a free-energy change of the system, as expressed
in equation (2):3
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∆G = –∆GV + ∆GS + ∆Gm   , (2)

where

∆GV = Volume free energy

∆GS = Surface free energy

∆Gm = Free energy of strain due to formation of precipitate particle.

The ∆GS  varies with the area of the particle, while ∆GV varies with the volume of the particle.
Therefore, assuming a spherical particle and ∆Gm = 0, equation (2) may be written as

∆G A r A r= +– ,1
3

2
3 (3)

where

A1 and A2 = Constants

r = Radius of the embryo.

Figure 2 is a plot of equation (3). The total free energy is positive when the particle radius is
small, since the ∆GS is larger than the ∆GV. However, the total free energy becomes negative as the
radius increases.

A particle with a radius less than the critical radius (r0) tends to dissolve in the solid solution,
while a particle with a radius larger than r0 tends to grow continuously because the free energy
is reduced as it grows. The size of a stable nucleus (r0) varies with temperature. As the temperature is
lowered, the r0 for precipitate nucleation rapidly decreases in size, as does the energy necessary to form
this critical embryo (∆Gr0

). Therefore, decreasing temperature correlates with an increase in the total
number of embryos that can precipitate.

Based on this theory, an MSRC aging treatment1,2 was developed to promote T1 nucleation
and growth in the matrix rather than at subgrain boundaries (see table 1). Aging began with initial
holding at low temperature with high undercooling, in order to enhance formation of T1 nuclei in the
matrix; then the furnace temperature was gradually increased 0.6 °C (1 °F)/hr to permit each precipitate
nuclei to grow above the r0 and become a stable nucleus. These nuclei continued to grow during aging,
with negligible dissolution into solid solution. In addition, long-term aging at low temperatures allowed
T1 precipitates to grow in the matrix before they could nucleate and grow at the subgrain boundaries.

As temperatures continued to rise, T1 eventually nucleated at subgrain boundaries and began to
grow. However, this treatment reduced time at the highest aging temperature. Thus, T1 was permitted to
nucleate and grow in the matrix before precipitation occurred at the subgrain boundaries. Early growth
of T1 in the matrix greatly reduced Cu and Li concentrations adjacent to the subgrain boundaries,
hindering the growth of subgrain boundary T1. At the subgrain boundaries, T1 was smaller and scarcer
than that seen in alloy 2195 subjected to isothermal aging.
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Table 1.  Five-step aging treatments.

In order to redesign and simplify MSRC aging, a new aging process had to be able to nucleate
and grow T1 in the same way. Therefore, the approach began with a series of five-step aging treatments
that resembled MSRC aging (table 1). Based on test results and microstructural characterization,
promising five-step aging treatments were selected and converted into simplified three- and two-step
aging processes (table 2). The most promising two-step aging treatment (No. 24) was selected for tensile
and cryogenic properties evaluation. This treatment was significant in that it achieved high cryogenic
properties in the same manner as the more sophisticated MSRC aging.

Table 2.  Three- and two-step aging treatments.

Aging 132 °C 135 °C 138 °C 141 °C 143 °C
Treatment (270 °F) (275 °F) (280 °F) (285 °F) (290 °F)

 No. (hr) (hr) (hr) (hr) (hr)

1 5 5 5 5 5
2 5 10 10 10 10
3 5 15 15 15 15
4 5 20 20 20 20
5 10 5 10 15 20
6 10 10 5 20 15
7 10 15 20 5 10
8 10 20 15 10 5
9 15 5 15 20 10

10 15 10 20 15 5
11 15 15 5 10 15
12 15 20 10 5 20
13 20 5 20 10 15
14 20 10 15 5 20
15 20 15 10 20  5
16 20 20 5 15 10

Aging 129 °C 132 °C 135 °C 138 °C 141 °C 143 °C
Treatment (270 °F) (270 °F) (275 °F) (280 °F) (285 °F) (290 °F)

 No. (hr) (hr) (hr) (hr) (hr) (hr)

17 – 20 – 20 – 15
18 – 20 – 20 – 10
19 – 20 – 20 –  5
20 – 20 – 15 – 10
21 – 15 – 20 – 10
22 – 15 – 15 – 10
23 20 – 20 – 20 –
24 – 20 – 40 – –
25 – – 20 – 40 –
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3.  EXPERIMENTAL PROCEDURES

Alloy 2195 (nominal composition: Al-4.0Cu-1.0Li-0.52Mg-0.42Ag-0.12Zr) was received in
the form of 1.7-in-thick rolled plates, which were solutionized and stretched 3 percent at ambient
temperature. The following procedures were then performed:

(1) Tensile tests were carried out at ambient temperature, using flat tensile specimens to evaluate
the effects of microstructural variation through the plate thickness. Uniaxial tensile properties were
evaluated in the longitudinal (L), longitudinal transverse (LT), and short transverse (ST) directions, with
at least two tests performed in each orientation. Fracture toughness tests were performed at ambient
temperature and –196 °C (–320 °F). The plates were evaluated with the notch parallel to the rolling
direction orientation per American Society for Testing Materials specification E740. The specimens were
fatigue-precracked at 20 Hz, then tensile tested to failure at a crosshead speed of 0.13 cm/min. Precrack
length and maximum load-to-failure were factored into the standard equation. Simulated service tests
were performed at –196 °C (–320 °F).

(2) Microstructural characterization was performed using a JEOL, Ltd. 2000F transmission
electron microscope operated at 200 kV. Samples were jet polished in an electrolyte (70-percent
methanol and 30-percent nitric acid) at –20 °C (–4 °F) with an applied potential of 12 V. Precipitates
were examined using selected area diffraction as well as bright and dark field imaging techniques.
Matrix and subgrain boundary precipitates were examined using a beam direction near the [110]matrix
zone axis. Two T1 variants and one Al2Cu precipitate (θ′) (or Al2Cu precipitate—a precursor of θ′ (θ″))
variant were oriented edge-on to the beam, so that their size and distribution could be readily
determined.
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4.  RESULTS

4.1  Hardness and Microstructure

Table 3 shows hardness variation as a result of the five-step aging treatment. The alloy was
underaged at 132 °C (270 °F) to enhance precipitate nucleation in the matrix, and then heated to 135,
138, 141, and 143 °C (275, 280, 285, and 290 °F, respectively) for various times in an effort to obtain
a peak or near-peak aged condition, while preventing preferential nucleation and growth of T1 at
subgrain boundaries. For alloy 2195, a hardness of 90 to 91 Rockwell hardness B scale (HRB) is roughly
equivalent to 73 ksi YS in the L and LT directions (the minimum strength requirement for this alloy).
Among the five-step aging treatments, 13 of 16 treatments achieved a minimum hardness of 90 HRB,
with Nos. 4, 7, 15, and 16 reaching a minimum hardness of 91 HRB even before being aged at 143 °C
(290 °F) (see table 3). More importantly, Nos. 8, 14, and 15 reached a hardness of ≈87 HRB after the
third step at 138 °C (280 °F), indicating that the required hardness of 91 HRB could be achieved without
having to age the material at temperatures above 138 °C (280 °F).

Table 3.  Five-step aging hardness values for rejected lot of alloy 2195 (lot 950M029B).

In order to determine whether five-step aging could be further simplified, several aging
treatments were conducted with three steps (Nos. 17 to 23) and two steps (Nos. 24 and 25) (see table 4).
Among the three-step aging treatments, No. 17 reached a hardness of 91.7 HRB after 55 hr. Promising
results were also obtained for a two-step aging treatment (No. 24) which achieved a hardness of more
than 90 HRB after being aged at 132 °C (270 °F)/20 hr followed by 138 °C (280 °F)/40 hr. These results
proved that an appropriate combination of temperature and time would permit five aging steps to be
reduced to three or two steps.

Aging 132 °C 135 °C 138 °C 141 °C 143 °C
Treatment (270 °F) (275 °F) (280 °F) (285 °F) (290 °F)

No. (hr) HRB (hr) HRB (hr) HRB (hr) HRB (hr) HRB

1 5 67.16 5 71.1 5 74.2 5 78.02 5 79.08
2 5 67.16 10 75.86 10 75.86 10 85.48 10 85.66
3 5 67.16 15 79 15 80 15 89 15 90.5
4 5 67.16 20 79.5 20 82.6 20 91.9 20 92.2
5 10 72.2 5 75.8 10 78.8 15 87.9 20 91.2
6 10 72.2 10 76.8 5 79.4 20 89.2 15 91.4
7 10 72.2 15 82.2 20 84.8 5 91.6 10 89.8
8 10 72.2 20 82.7 15 86.6 10 87.5 5 89.4
9 15 73.2 5 76.8 15 82.1 20 89.3 10 90.8

10 15 73.2 10 79.8 20 83.2 15 89.4 5 90.2
11 15 73.2 15 81.4 5 82.5 10 83.2 15 91.3
12 15 73.2 20 79.4 10 84.5 5 85.6 20 90.5
13 20 76.2 5 77.2 20 82.3 10 87.4 15 91.2
14 20 76.2 10 79.1 15 87.1 5 88.2 20 91.5
15 20 76.2 15 80.2 10 83.4 20 91.2 5 92.2
16 20 76.2 20 81.4 5 87.4 15 91.5 10 90.8
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Transmission electron microscopy (TEM) was used to examine the step-aged microstructures.
After aging at 132 °C (270 °F)/20 hr, the matrix consisted of numerous fine θ″, with scattered T1 (see
fig. 3(a)). The large number of very fine θ″ indicated that an early stage of nucleation had taken place
at 132 °C (270 °F). TEM diffraction using a [110]Al zone axis confirmed the observation that aging at
132 °C (270 °F) resulted in very early stage precipitation of T1 (see fig. 3(b)). Moderate growth of both
θ″ and T1 occurred after additional aging at 135 °C (275 °F) (see fig. 4(a)). At this stage, the subgrain
boundaries were still decorated with pile-up dislocations, with no sign of preferential T1 precipitation.
Aging at 135 °C (275 °F) enhanced T1 nucleation and growth in the matrix instead of the subgrain
boundaries (see fig. 4(b)).

At 138 °C (280 °F), T1 grew considerably, but the matrix still contained a large number of θ″
precipitates (see fig. 5(a)). More significant T1 growth occurred at subgrain boundaries after aging at
141 °C (285 °F) (see fig. 5(b)). After final step-aging at 143 °C (290 °F), hardness increased rapidly,
indicating near-peak precipitation of the strengthening phases. T1 was the majority phase in the matrix
and was present at subgrain boundaries in sizes no coarser than the matrix T1 (see fig. 6). Similar
microstructural evolution was observed in the three- and two-step aging treatments. Figure 7 shows the
microstructure that resulted from two-step aging (No. 24). The similarity in final microstructure between
Nos. 4 and 24 indicated that two-step aging could be used to achieve the same precipitate nucleation and
growth characteristics observed during five-step aging.

Substantial microstructural differences were found between conventionally aged and step-aged
materials. In conventionally aged alloy, T1 was coarser and had a much higher density in the subgrain
boundaries than in the matrix.1,2 In step-aged alloy, the subgrain boundaries were mostly devoid of T1
(see fig. 7). Whereas T1 occasionally existed at subgrain boundaries, it was not as dense as T1 in the
matrix. Differences also existed in the size and density of matrix precipitates. Conventionally aged alloy
contained more T1 than θ′ and θ′′ in the matrix, while two-step aging produced more θ′ and θ′′ than T1 in
the matrix. This finding clearly indicates that two-step aging can achieve the same strength levels as
conventional aging, by precipitating more θ′ and θ′′ in the matrix, while preventing preferential T1
precipitation at subgrain boundaries.

Table 4.  Three- and two-step aging hardness values for rejected lot of alloy 2195 (lot 950M029B).

Aging 129 °C 132 °C 135 °C 138 °C 141 °C 143 °C
Treatment (265 °F) (270 °F) (275 °F) (280 °F) (285 °F) (290 °F)

No. (hr) HRB (hr) HRB (hr) HRB (hr) HRB (hr) HRB (hr) HRB

17 – – 20 76.2 – – 20 86.2 – – 15 91.7
18 – – 20 – – – 20 – – – 10 88.9
19 – – 20 – – – 20 – – – 5 87.1
20 – – 20 – – – 15 84.1 – – 10 88.0
21 – – 15 – – – 20 84.4 – – 10 88.5
22 – – 15 – – – 15 – – – 10 87.6
23 20 75.8 – – 20 83.2 – – 20 89.2 – –
24 – – 20 76.2 – – 40 90.7 – – – –
25 – – – – 20 79.1 – – 40 89.8 – –
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Figure 3.  Precipitate morphology after preliminary step-aging at 132 °C
(270 °F)/20 hr. TEM photographs showing: (a) early stage of
precipitate nucleation growth in the matrix and (b) diffraction
pattern with strong streakings, indicating early nucleation and
precipitate growth.

(a)

(b)
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Figure 4.  Early stage of T1 growth: (a) on matrix during 132 °C (270 °F)/
20 hr + 135 °C (275 °F)/10 hr (No. 14) and (b) at subgrain
boundaries during 132 °C (270 °F)/20 hr + 135 °C (275 °F)/
20 hr (No. 16).

(a)

(b)
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Figure 5.  Noticeable T1 growth during different five-step aging treatments.
TEM photographs showing: (a) early stage in matrix during
132 °C (270 °F)/20 hr + 135 °C (275 °F)/20 hr (No. 16) and
(b) more T1 growth at subgrain boundaries during 132 °C
(270 °F)/5 hr +135 °C (275 °F)/20 hr + 138 °C (280 °F)/20 hr
+ 141 °C (285 °F)/20 hr (No. 4).

(a)

(b)
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Figure 6.  Significant T1 growth during five-step aging treatment.
TEM photographs showing: (a) 132 °C (270 °F)/5 hr
+ 135 °C (275 °F)/20 hr + 138 °C (280 °F)/20 hr
+ 141 °C (285 °F)/20 hr + 143 °C (290 °F)/20 hr
(No. 4) and (b) TEM diffraction pattern.

(a)

(b)
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Figure 7.  Very limited T1 growth after two-step aging treatment at 132 °C
(270 °F)/20 hr + 138 °C (280 °F)/40 hr (No. 24). TEM photo-
graphs showing: (a) matrix and (b) subgrain boundaries.

(a)

(b)
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4.2  Mechanical Properties

Several step-aging treatments (Nos. 17, 24, and 25) were selected for tensile strength and
fracture toughness evaluation, since the SLWT program requires a minimum YS of 73 ksi in the
L direction. Tensile data indicated that the two-step aging can achieve the same YS and ductility levels
as those produced by conventional aging (see table 5). The most noticeable improvement was seen in
CFT, for which the minimum requirement is 30 ksi√in (table 6). Two-step aging significantly improved
CFT on a rejected lot (950M029B) (see table 6 and fig. 8—MSRC aging data1,2 is included for
comparison). The CFT was as low as 25.4 ksi√in for conventionally aged lot 950M029B (a bad lot),
whereas two-step aging improved its CFT to ≈34 ksi√in (an improvement of over 30 percent). Two-step
aging also improved the CFT for lot 950M020F (a good lot) by ≈10 percent.

Table 5.  Tensile properties for aged alloy 2195.

Table 6.  Mechanical properties for aged alloy 2195.

Aging YS UTS
Lot No. No. Orientation (ksi) (ksi) %El

950M029B 17 L 77.4 80.9 8.5
ST 70.3 83.4 5.5

950M020F 17 L 72.2 76.8 9.3
ST 69.9 82.2 4.7

950M029B 24 L 79.4 84.5 9.5
LT 76.8 84.6 9.9
ST 69.6 82.2 4.5

950M020F 24 L 79.1 85.7 10.6
LT 71.8 81.2 10.1
ST 67.2 80.5 7.6

950M029B 25 L 77.4 81.1 9.0
ST 71.8 84.1 4.8

950M020F 25 L 73.8 77.8 9.3
ST 71.85 83.9 4.7

Lot No. YS UTS K at a/2 K at a/2
(3% Stretch)          Aging (ksi) (ksi) %El (LN2) (Ambient)

950M029B MSRC [1] 77.8 85.1 9.4 32.10 31.80
two-step aging
No. 24 76.8 84.6 9.9 33.74 30.44
Conventional [1] 74.0 83.1 7.0 25.40 30.04

950M020F MSRC [1] 76.1 83.0 9.1 37.13 34.50
two-step aging
No. 24 71.8 81.3 10.0 37.64 34.79
Conventional [1] 76.1 83.4 8.0 34.91 32.90

MSRC [1]: Denotes heating rate-controlled aging process.



16

Compared with conventional aging, both MSRC and two-step (No. 24) aging offered consider-
able improvements in fracture toughness that ranged from 10 to 30 percent, depending upon the original
CFT. A simulated service test was conducted using lot 950M029B, which had failed to pass when aged
conventionally. After two-step aging, lot 950M029B passed by a very comfortable margin, as well as
exhibiting much higher fracture toughness at cryogenic than at ambient temperature (table 7).

Table 7.  Simulated service test results for alloy 2195 (lot
950M029B) that received two-step aging (No. 24).

Figure 8.  Comparative data indicating that two-step (No. 24) and MSRC
aging greatly improved CFT to meet minimum fracture tough-
ness requirement (30 ksi√ in).

Test Type, Proof Stress Fracture Stress KIC at a/2
Temperature (°F) (ksi) (ksi) (ksi√in)

Proof, Ambient – 76.25 30.57
SS, –323 74.10 85.07 34.11
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4.3  Discussion

This study demonstrates that a special aging treatment can be designed to obtain a desirable
microstructure for alloy 2195, resulting in much improved CFT. The major factors that affect CFT are
matrix and subgrain boundary precipitates, especially T1 at subgrain boundaries. In Al-Li alloys,
improved CFT has been correlated to such factors as solidification of low-melting point impurities,6

reduced strain localization in closer and more widely spaced slip bands,7 increased homogeneity of
plastic deformation from increased strain-hardening capacity,8 and delaminated toughening on fracture
surfaces.9,10 However, these mechanisms are not responsible for the improvements observed in this
study, because the alloy chemistry, thermomechanical processing, grain size, and YS do not exhibit
distinguishable differences when specimens are made out of the same lot.

This study strongly suggests that, if preferential T1 precipitation can be prevented at subgrain
boundaries, alloy 2195 will have inherently higher fracture toughness at cryogenic than at ambient
temperature. Subgrain boundary T1 precipitation is probably the most important factor influencing CFT
for alloy 2195. Since mechanical properties can be considerably impacted by any change in micro-
structure, excessive precipitation should be avoided in the subgrain boundaries of alloys intended for
cryogenic applications.

The two-step aged specimen matrix has a microstructure that is significantly different from that
of a conventionally aged specimen, producing much higher CFT with nearly the same YS. Similar YS
levels were observed for the two-step and conventionally aged materials, which can be qualitatively
correlated to microstructural characteristics; e.g., type, size, distribution, and density of strengthening
phases T1 and θ″. According to equation (1), the total number of embryos that can precipitate will
increase as temperature decreases. Thus, the number of precipitate embryos is increased by initial
holding at low temperature with high undercooling. Subsequent aging at 138 °C (280 °F) enables these
embryos to grow slowly without dissolving, which increases the total number of precipitates. Therefore,
additional strengthening is provided by the much higher number of θ′ and θ″ precipitates present in
two-step aged materials, producing YS comparable to conventionally aged materials. As aging
continues, T1 will eventually nucleate at subgrain boundaries and start to grow. However, this treatment
allows T1 to precipitate and grow in the matrix before the subgrain boundary. In addition, early
coarsening of matrix T1 greatly reduces the concentration of matrix Cu and Li, hindering the growth of
subgrain boundary T1 in a diluted Al-Cu-Li solid solution.

From an economical standpoint, two-step aging is not recommended for “good” lots, due to the
fact that the aging duration (≈60 hr) is longer than conventional aging (≈30 to 35 hr). Instead, it should
be exploited to process “bad” or marginal lots, in order to avoid material rejection due to low cryogenic
properties. If implemented, the two-step aging treatment can improve SLWT reliability, decrease the
rejection rate for low-property materials, and ultimately reduce NASA’s costs for this high-value
material.
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5.  CONCLUSIONS

(1)  The original MSRC aging treatment was successfully modified into a simplified two-step
aging treatment that consists of 132 °C (270 °F)/20 hr + 138 °C (280 °F)/40 hr. Results indicated that
two-step aging can achieve the same YS levels as those produced by conventional aging. Two-step
aging was very effective at enhancing CFT and meeting simulated service requirements for previously
rejected materials.

(2)  The cryogenic properties were improved by controlling the size and location of T1 precip-
itation in the same manner as MSRC aging. However, two-step aging reduced the length of time that the
materials were exposed to high temperatures, thus constraining T1 nucleation and growth at subgrain
boundaries and permitting the material to achieve much improved CFT.

(3)  During two-step aging, high tensile YS was achieved by promoting T1 and θ′′ nucleation in
the matrix. The total density of T1 and θ′′ was higher than that seen in conventionally aged materials.
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